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Abstract 12 

There is no means of predicting when influenza pandemics could occur because risk factors are poorly 13 

understood. Risk factor assessment utilized numerous statistical methods, 10 multi-century solar activity 14 

and climate change datasets, and expert reviewed influenza outbreaks. The mid-study coldest temperature 15 

was compared with glacial cycle peak temperatures (n=16 ice cores). There was a grand mean 0.92 16 

pandemics per 11-year sunspot number cycle (SE=0.15, n=25, 1700-) and a higher pandemic probability 17 

at cycle peaks and troughs +/-1-year (logistic regression, Peaks: P=0.01, OR=4.2. Troughs: P=0.03, 18 

OR=3.4). Multiple logistic regression confirmed peak+trough+/-1-year stages and positive cosmic ray 19 

intensity anomalies relative to its 1961-1990 mean as pandemic and epidemic predictors-triggers 20 

respectively (Pr>|z|<0.05, 1700-). Simple logistic1 and linear2 regression identified colder Greenland and 21 

Northern Hemisphere temperatures, increased cosmic ray intensity, Arctic sea ice cover, and Greenland 22 

ice accumulation rate relative to their 1961-1990 means as outbreak1 and annual outbreak rate2 predictors 23 

(P<0.05, 1-11yr moving average1 and cycle mean2 anomalies, 1500-1, 1700-1,2). Greenland was at its 24 

coldest mid-study, 8-kiloyears after the glacial cycle peak temperature (mean -4.8¡C, n=10 ice cores), or -25 

21% of its prior Holocene interglacial increase. Four categories of risk factors were identified, including 26 
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solar cycle extremes, low solar and geomagnetic activity, Arctic cold-glaciation linked to glacial cycle 27 

stage, and geographic risk. 28 

Key words: influenza pandemic; zoonosis; risk factor; circadian system; cold stress; immunosuppression; 29 
low solar activity; geomagnetism; cosmic rays; cold climate change. 30 

 31 

Introduction 32 

The Little Ice Age (mid-13th to mid-19th centuries) was the coldest period after the Holocene Climate 33 

Optimum (HCO, peak glacial cycle temperature), which coincided with five millennia of neoglacial 34 

advances that peaked in size mid-study [1], [2]. This period was hallmarked by regional catastrophes 35 

associated with cold-glacial climate change, including famine, wars, and epidemics [3], [4]. Dozens of 36 

influenza pandemics and regional epidemics, and other diseases, occurred during this period. Pandemics 37 

could infect 30-50% of the population within 1-2 years, and were associated with explosive disease 38 

spread, and varying mortality rates and geographic extents [5]Ð[11]. Some 20th-21st century influenza 39 

pandemic mortality rates were estimated at 1Ð3% (1918), 0.03% (1968), and 0.001Ð0.007% (2009) [12].  40 

There is no means of predicting when influenza pandemics could occur because the risk factors associated 41 

with pandemics are not well understood [13]. To better prepare for future pandemics (H5N1, H7N9 etc.) 42 

we must explore if  the spate of zoonoses and pandemic since 1997 were the result of unknown mitigable 43 

risk factors. Three categories of risk factors putatively-thematically implicating Òimmunological 44 

susceptibility and induced immunosuppression,Ó and one linked to the study periodÕs stage of the glacial 45 

cycle were evident in the literature.  46 

Firstly, timing risk has been linked to the extremes of the 11-year sunspot number (SSN) cycle (see Hope-47 

Simpson paragraph). Sunspots represent dark patches of intense magnetic fields that loop through the 48 

surface of the sun [14]. An 11-year SSN peak and trough concentration of outbreaks potentially 49 

implicates changes in solar magnetic polarity [15] or heliospheric magnetic flux [16], [17]. Theoretically, 50 

circadian system cryptochrome repressor proteins whose photoreduction spin chemistry is 51 
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magnetoreceptive (a radical-pair mechanism), interacting with circadian core molecular clockwork, could 52 

offer a means by which solar-/geo-magnetism modulated immuno-inflammatory biology [18]Ð[20]. The 53 

circadian system core molecular clockwork controls the immune and inflammatory systems via 54 

oscillatory transcriptional activators (CLOCKÐBMAL1) and repressors (Cryptochrome1/2, Period1/2) 55 

[21]. Coincidentally, the influenza-A virus (IAV) evolutionarily linked its replication cycle to the 56 

circadian system (time of day, winter) [22], [23]. Thus, solar cycle extremes could have dysregulated 57 

immune responses, [24], [25] to aid viral entry and replication in immunologically susceptible animals 58 

(epizootics), people (zoonosis, family clusters), and populations (epidemics, pandemics). 59 

Secondly, geographic risk reflects the prior cited expert reviews [5]Ð[11]. Geographic risk considers the 60 

role of innate immunity single nucleotide polymorphisms (SNPs) in creating immunological susceptibility 61 

in people of certain ethnicities (Caucasian, Chinese) to novel-zoonotic IAV infection [26], [27], in regions 62 

pertinent to outbreak origination (Europe, North America, Russia, and China). Increased cosmic rays and 63 

ionizing radiation have been linked to immunosuppression and increased infectious disease mortality 64 

[28]Ð[30]. Peak levels of cosmic ray induced ionization occurred during the Maunder minimum (mid-65 

study) associated with latitudinal and magnetic dipole variations, implicating northern European latitudes 66 

and the Far East [31]. Regional-scale immunosuppression could implicate increased cosmic rays directly 67 

and indirectly via its climate change impact linked to solar-/geo-magnetism (low cloud cover) [32]. 68 

Equine and migrating-avian viral reservoirs and ecology must also be considered in geographic risks.  69 

The literature is devoid of quantitative pandemic risk factor studies associated with solar activity and/or 70 

climate change spanning the study period (1500-), beyond timing risk studies (1700-). Therefore thirdly, 71 

climate change risks reflect shorter-term cold weather influences on seasonal influenza and avian 72 

influenza epizootics. Firstly, the degree and duration of cold stress dysregulate immune responses [33], 73 

[34], implicating key immuno-molecular pathways coopted by IAVs during infection (e.g. Nuclear Factor 74 

kappa B, NF-!B ) [35], [36]. Secondly, cold weather modulates the formation and dispersion of infectious 75 

aerosols, their respiratory tract (RT) penetration, and drying out RT mucosa [37]. Thus, low temperature 76 
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and relative humidity were inversely correlated with influenza disease burden during cooler-drier winters 77 

in temperate regions [38], [39]. A fourth risk factor linked to the mid-study periodÕs stage of the glacial 78 

cycle (coldest iciest post-Holocene Climate Optimum period) was evident in the literature (Discussion). 79 

In 1978 Hope-Simpson published a Nature correspondence suggesting 20th century pandemics were 80 

associated with sunspot number maxima [40]. A few statistical studies since reported pandemic timing 81 

risk associated with the 11-year international sunspot number cycle peaks +/- 1-year (Tapping) [41], and 82 

troughs +/- 1-year as well (Ertel, Qu) [42], [43], or sunspot numbers exceeding percentile thresholds 83 

(Yeung) [44]. This sunspot cycle timing risk was also demonstrated with SARS-CoV-2 (2019 sunspot 84 

number trough) and is claimed for Ebola [45]. Pandemics have also been linked with grand solar 85 

minimum periods [46], [47]. 86 

Towers, an expert biostatistician, falsified the Tapping, Ertel, and Yeung studies after applying more 87 

robust statistical methodologies to their corrected outbreak lists [48]. Qu more recently used YeungÕs 88 

pandemic list and logistic regression analysis to show that sunspot number maxima and minima +/Ð 1-89 

year were risk factors. The influenza outbreak consensus lists used by Tapping, Ertel, and Yeung (also 90 

Qu) were derived from numerous publications (1927-1998, median 1986). These publications detailed 91 

different geographies over different periods using varying pandemic definitions and data sources, which 92 

likely resulted in incompleteness, inaccuracy, and uncertainty [5], [6]. Solar-pandemic timing risk study 93 

lists either utilized the historian lists as provided (Tapping) or criteria to derive smaller consensus lists 94 

(Ertel, Yeung, Qu), meaning valuable outbreak data was discarded. No previous solar activity-pandemic 95 

outbreak lists detailed regional epidemics, concurrent epizootics, or geographic origin and extent. 96 

Comprehending the high-level chain of biological events common to all novel-zoonotic IAV infections, 97 

irrespective of whether that IAV arose by mutation, recombination, or reassortment [49], aids an 98 

immunology orientation to this study. Geographically expansive outbreaks arose when a novel-zoonotic 99 

IAV emerged for which a susceptible population (broad demographics) lacked pre-existing protective 100 

immunity (neutralizing antibody and/or cellular immunity). At the same time, all novel-zoonotic IAVs 101 
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overcame and/or dysregulated immunological defenses (innate and early adaptive immunity), physical 102 

(mucosal surfaces), and cellular barriers (cell attachment and entry, intracellular restriction factors) [50]Ð103 

[52]. The IAV then replicated in the respiratory tract in sufficiently high titers and was transmitted to a 104 

second person. This biological journey will be referred to as ÒBottleneck-1Ó, and only after this was 105 

surmounted could geographically expansive transmission have occurred (ÒBottleneck-2Ó) [53]. 106 

Influenza pandemics, regional epidemics, concurrent epizootics and their geographic details were 107 

compiled from seven expert reviews, and organized into five category groupings. Outbreaks were 108 

(re)classified according to WHO Phase 5 and 6 pandemic descriptions based on pooled geographic 109 

information. Numerous regression and other statistical methods were used to define risk factors, 110 

probabilities, and predictors from among 10 solar-/geo-magnetic activity (proxied by cosmic ray intensity, 111 

10-Beryllium cosmogenic radionuclide, solar modulation function, sunspot numbers) and solar 112 

electromagnetic activity (proxied by total solar irradiance), and climate change variables (proxied by 113 

Northern Hemisphere and Greenland temperatures, Artic sea ice cover, Greenland ice accumulation 114 

rate) spanning 3-5 centuries. All data was geographically relevant to outbreak origination and 115 

dissemination and animal-IAV reservoirs. Sixteen polar ice cores were used to benchmark the study 116 

periodÕs climate relative to the Holocene Climate Optimum peak glacial cycle temperature 8kyr ago.  117 

Materials and methods 118 

Pandemic and epidemic database 119 

Influenza pandemics, regional epidemics and concurrent animal epizootics from 1500-2009 were 120 

identified in seven reviews (2001, 2008-2011) by six expert professors [5]Ð[11]. Key information was 121 

summarized from these reviews and 32 pooled review-cited sources, and tabulated into categories defined 122 

in S1 Figure A pandemic reflected an expert-reviewerÕs explicitly stated description of an ÔinfluenzaÕ 123 

outbreak, which was confirmed in the pooled literature in " 2 WHO regions, whereas an epidemic 124 

reflected expert descriptions of an ÔinfluenzaÕ outbreak confirmed in one WHO region ("2 countries, or 125 
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stated as regional). This classification was consistent with WHO Phase 5 regional epidemic and Phase 6 126 

pandemic descriptions [54], thus enabling an objective (re)classification of outbreaks based on pooled 127 

geographical information. This method avoided subjective disease severity judgments based on 128 

incomplete information, while reflecting that not all outbreaks resulted in severe disease with high 129 

mortality that left their mark in the global historical record, especially pre-1700. 130 

Pandemic and major regional epidemic (ÒepidemicÓ) data was pooled for combined and separate analysis, 131 

and robustness testing, as follows:  132 

1) Category A pandemics (pandemics +/-epizootics/zoonosis plus epidemics with epizootics/zoonosis) 133 

(epizootic/zoonosis  =  epizoo, category  =  Cat.), 134 

2) Cat.B epidemics (epidemics without epizootics/zoonosis),  135 

3) Pandemics +/-epizootics (pandemics +/-epizootics/zoonosis),  136 

4) Epidemics +/-epizootics (epidemics +/-epizootics/zoonosis). 137 

Solar activity and climate change data 138 

Annually resolved publicly available datasets starting between 1500 and 1700 and ending post-1994, were 139 

obtained from the National Oceanic and Atmosphere Administration (NOAA), Laboratory for 140 

Atmospheric & Space Physics Interactive Solar Irradiance Data Center, International Association of 141 

Geomagnetism and Aeronomy, and WDC-SILSO Royal Observatory of Belgium websites. The following 142 

datasets were collected for analysis and benchmarking: 143 

Solar-/geo-magnetic activity related datasets: international sunspot numbers (SSN data) [55], and group 144 

sunspot numbers (GSSN data) [56], cosmic ray intensity (CRI data) [57], solar modulation function (MeV 145 

data) [58], 10-Beryllium radionuclide (10Be data, see missing data comment in the readme file, Figshare) 146 

[59]. Geomagnetic activity index data was also downloaded for correlation analysis (GMA-AA data, 147 

1868-) [60], given solar modulated geomagnetism (solar-/geo-magnetism) controls atmospheric cosmic 148 

ray entry and ionization [61]. Solar electromagnetic activity dataset: total solar irradiance (TSI data) [62].    149 
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Climate change datasets: Northern Hemisphere temperature (NHT¡C data) [63], Greenland ice core 150 

derived temperature (GT¡C data) [64], Arctic algal growth anomaly (inverse sea ice cover proxy, SIC 151 

data) [65], and Greenland ice accumulation rate (IAR data, see 10Be missing data comment above, same 152 

dataset) [59]. All terrestrial-derived datasets were geographically relevant to influenza outbreaks and 153 

animal-IAV reservoirs.  154 

Data was provided as, or converted to anomaly data relative to the climate reference period mean (RPM), 155 

generally the 1961-1990 mean (except SIC and MeV), per the norms of the scientific community for 156 

long-term climate change assessments [66]. A negative NHT¡C and GT¡C anomaly indicated a colder 157 

temperature than the 1961-1990 RPM. A negative SIC anomaly indicated less crustal algal growth than at 158 

its RPM due to less sunlight reaching the sea floor rocks, corresponding with an increase in sea ice cover 159 

[65]. A positive IAR indicated increased Greenland glaciation rates above the RPM. A negative SSN, 160 

GSSN, TSI, and MeV anomaly, and a positive CRI and 10Be indicated solar activity lower than the RPM. 161 

A glacial cycle perspective on outbreak risks was obtained by benchmarking the 11,400-year GT¡C 162 

dataset against 15 other Polar ice cores, utilizing two-three immutable glacial cycle landmarks. For 163 

analytical and graphical purposes, the glacial cycle peak temperature closest to the end of the prolonged 164 

interglacial rise was termed the Holocene Climate Optimum (HCO); the Little Ice Age (LIA) temperature 165 

nadir the lowest post-HCO temperature trough during the LIA period (mid-13th-19th centuries). The Last 166 

Glacial Maximum (LGM) corresponded with the lowest temperature trough of the last glacial cycle 167 

immediately prior to the sustained interglacial temperature rise. The Holocene interglacial was the period 168 

between the LGM and HCO. Benchmarking datasets: Greenland; (Vinther data) [67], (Alley data) [68], 169 

(Buizert, nine different Greenland ice core locations) [69]. Antarctica; (Jouzel data, EPICA Dome C) [70], 170 

(Uemura data, Dome Fuji) [71], (Lorius data, Vostok) [72], (Mulvaney data, James Ross Island) [73].  171 

Basic data analysis 172 

Basic statistical parameters were assessed for each independent variable (IV : number of years, mean, 173 
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median, minimum, maximum, standard deviation-SD, confidence intervals). The normality of data 174 

distribution was assessed by skewness (within +/-2), and kurtosis (within +/-7) values because all datasets 175 

exceeded 300 years [74]. Eleven correlation matrices (1Ð11-year SMA periods) were produced between 176 

ten solar-/geomagnetic and electromagnetic activity and climate change variables (SSN, 10Be, CRI, MeV, 177 

TSI, GMA-AA, and NHT¡C, GT¡C, SIC, IAR). Collinearity was assessed during multiple logistic 178 

regression analysis using the variance inflation factor (VIF). For this study, a VIF>10 was considered 179 

problematic, a VIF>5 was highly correlated, and a VIF>2.5 was moderately correlated [75].   180 

Outbreak distribution by solar cycle stage (timing risk factor s) 181 

Influenza outbreak distributions across the 11-year solar cycle since 1700 were investigated (Figure 1A) 182 

using simple logistic regression. This method was used to derive the probability of an outbreak by solar 183 

cycle stage groupings, for SSN, GSSN, and TSI cycles [76]. Investigatory stage groupings comprised the 184 

peak +/- 1-year (P01), trough +/- 1-year (T01), and the combined peak and trough +/- 1-year (P01+T01), 185 

versus the combined inter-peak-to-trough plus inter-trough-to-peak stages (P_T+T_P) (Figure 1B).  186 

 187 

Figure 1: International sunspot number cycles and influenza outbreaks since 1700. (A) Sunspot numbers from 188 

1700-2018 depict solar cycles with varying periodicities, including the 11-year Schwabe cycle and other 189 

superimposed longer-term Ògrand solarÓ cycles that modulated the magnitude of the 11-year Schwabe cycle SSN 190 

peaks and troughs. During the Little Ice Age and study period, there were numerous grand solar minimum periods, 191 
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including the Wolf (1270-1340), Spšrer (1390-1550), Maunder (1640-1720), Dalton (1790-1830), and GleissbergÐ192 

Gnevishev (1898Ð1923) minima [77]Ð[79]. Since the 1957 Solar Cycle-19 SSN peak, all Schwabe cycle peaks have 193 

declined, indicating the sun entered a new grand solar minimum period. (B) An extracted Schwabe cycle (1843-194 

1856) is used to demonstrate the solar cycle stage classification used to create binary variables for regression 195 

analysis. Data citations: Outbreak database reviews [5]Ð[11]. Publicly available sunspot number data [55].  196 

Logistic regressions were estimated according to the following equations: 197 

𝑙𝑛 !

! !!
! ! ! ! ! ! ! ! ∙ ! !!" ! 𝑏! ∙ ! !!"  (for P01and T01 separately).    (1) 198 

Where DP01 is a dummy variable: 1 for P01, and 0 for all other cycle stages; DT01 is a dummy variable: 1 199 

for T01, and 0 for all other cycle stage; b1 and b2 are regression coefficients.     200 

!"
!

! ! !
 =  ! ! + ! ! ∙ ! !!" ! !"  (for the combined P01+T01)         (2) 201 

Where DP01T01 is a dummy variable (0 for P_T+T_P, and 1 for T01 and P01); b0 is the intercept, b1 is the 202 

dummy variable coefficient. These formulas were used to determine the coefficients b1 or b1 and b2, 203 

enabling the determination of the effect of the stage grouping on outbreak probability (increase, decrease, 204 

no impact). Cycle stage probabilities and Odds ratios (OR) were then derived.  205 

The FisherÕs exact test of independence was used to assess differences in solar cycle stage distributions 206 

between pandemic +/-epizootics versus epidemic +/-epizootics, for cycles defined by SSN, GSSN, TSI, 207 

CRI, and MeV periodicities. This method compared the differences in the proportion of years with an 208 

influenza outbreak over key stages of the solar cycle post-1700. Stage comparisons included P01, T01, 209 

and P01+T01 versus T_P+P_T, and P+T, and P+T (exact peak plus trough) versus All stages-(P+T). The 210 

outbreak proportion was calculated as the number of years with outbreaks multiplied by 100 and divided 211 

by the total stage years.  212 

Logistic and linear regression analysis (non-timing risk factors)  213 

Three regression methods were utilized to identify non-timing outbreak risk factors, and understand what 214 
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factors increased or decreased the probability of an outbreak. Firstly, a simple logistic regression was 215 

used to investigate the impact of a single independent variable (IV) or predictor in explaining the 216 

variability of the dependent variable (outbreak category), in case the outcome was binary [80] [81]. 217 

Logistic regressions were estimated according to the following equation [82]: 218 

!"
!

! ! !
! !  ! ! ! ! ! ! !   (3) 219 

Where p was the probability that an outbreak existed in a certain year; Xi is one of the IVs (SSN, GSSN, 220 

TSI, CRI, MeV, 10Be, NHT¡C, GT¡C, SIC, and IAR); 𝑙𝑛 (Ln) denotes the natural logarithm; ! !  and b are 221 

regression coefficients. Ten logistic regressions based on model (3) were estimated using the raw 222 

anomaly and a 2Ð11-year SMA data (one-sided moving average) from 1500- and 1700-. Data smoothing 223 

was used to determine if the predictive utility was improved by removing short-term volatility, and to 224 

reflect the sequential increase in Pearson correlation coefficients between 2 and 11 years with solar-/geo-225 

magnetic activity and electromagnetic activity variables, versus climate change variables. 226 

Secondly, it was investigated if  the mean number of outbreaks per solar cycle year could be predicted by 227 

the cycle mean anomaly, where cycle timelines were defined by SSN, GSSN, TSI, CRI, and MeV trough-228 

to-trough periods (T_T, from 1700-). Simple linear regression was used to check for linear associations 229 

between these continuous variables [83]. For each set of cycles defined by SSN, GSSN, TSI, CRI, and 230 

MeV, 10 linear regressions were estimated according to the following equation [80]:  231 

! ′!  !  𝑎! ! ! ! ! !   (4) 232 

Where Y'i was the predicted mean number of category outbreaks per year for cycle number i, ! ! is an 233 

average of the independent variable (one of SSN, GSSN, TSI, CRI, MeV, 10Be, NHT¡C, GT¡C, SIC, and 234 

IAR) for cycle i, a0 and a are corresponding regression coefficients. 235 

Thirdly, multiple logistic regression was conducted to investigate the simultaneous impact of up to eight 236 

IV predictors (assessed 1Ð11-year SMA) plus a SSN P01+T01 dummy variable on the probability of five 237 

different categories of influenza outbreaks. A stepwise (SW) backward method was used and 55 models 238 
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were assessed based on mathematical criteria. An initial multiple logistic regression equation contained 239 

all IVs as follows (from 1700-) [84] [85]: 240 

!"
!

!! !
 ! !b! + !! ! ! !"## ! !!" ! b! ! TSI + ! ! ! !"# + ! ! ∙MeV + ! ! ! Be10 ! !! ! ! !"#$% !241 

! ! ! !"#$ ! b! ! !"# ! ! ! ∙ !"#  (5)!242 

Where p is the probability an event existed in a particular year; ln denotes the natural logarithm; b0 243 

and b1-9 are regression coefficients. Predictors were then iteratively removed, and an interim 244 

assessment made using the Akaike information criterion (AIC). This was continued until the most 245 

reduced model was identified comprising the lowest AIC value, with at least one significant 246 

variable (Pr>|z|<0.050) plus associated marginal predictors (Pr>|z|<0.20, but mainly Pr>|z|<0.15). 247 

Outbreak distribution by variable anomaly quartile groupings  248 

Chi-squared and Fisher's exact tests of independence were used to assess anomaly magnitude and sign 249 

quartile grouping proportion differences in outbreaks (1500-, 1700-). Independent variable anomalies 250 

were classified into six categories based on percentiles: large, medium, and small negative and positive 251 

quartiles. An anomaly below the 25th percentile was considered Òlow,Ó above the 75th percentile Òlarge,Ó 252 

and between 25th and 75th percentiles ÒmediumÓ for both positive and negative anomalies. For each 253 

outbreak category, the number of years with and without outbreaks was calculated, from which quartile 254 

grouping proportions were calculable in R. Chi-squared (used when the expected frequency "5) and 255 

Fisher's exact tests (used when the expected frequency <5) of independence were used to compare 256 

differences between the observed frequency (Äo) and expected frequency (Äe) distributions of outbreaks 257 

(proportions) by quartile groupings [86]. 258 

General statistical analysis considerations 259 

This exploratory study involved the use of multiple statistical analyses each with implicit sub-hypotheses 260 

using continuous data and fixed outbreaks, without any form of random sampling procedure. No P-value 261 

corrections were made for multiple comparisons to ensure the risk of rejecting important discoveries was 262 
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minimized, given the catastrophic nature of pandemics and the exploratory-ground breaking scope of this 263 

study. Subsequent smaller-scale confirmatory studies with preplanned hypotheses should be conducted to 264 

confirm the observed associations [87], [88]. Statistical analyses were conducted using R statistical 265 

programming language (version 4.0.2) and Microsoft Excel (Mac). For exploratory science purposes, a 2-266 

sided P-value <0.05 or Pr(>|z-score|) <0.05 was considered statistically Òsignificant.Ó 267 

Results 268 

Influenza outbreak database overview 269 

The outbreak database details 49 regionally expansive influenza outbreaks identified within the seven 270 

expert reviews, which confirmed geographic extent (n = 49/49), origination (n = 49/49), and concurrent 271 

epizootics/zoonosis (n = 21/49). Text confirmation of geographic extent, and other relevant information, 272 

was provided by a median of 3.0 expert reviews (range = 1-7, mean = 3.2,) and median of 5.0 review-273 

cited publications (range = 1-9, mean = 4.7) per outbreak. Three outbreaks were removed from the 274 

provisional pooled list (n = 52) because geographic extent was unverifiable (1529, 1793, and 1843). No 275 

new outbreaks from outside the seven reviews were added. Database summary results are provided in S1 276 

Table. The 49 outbreaks were split into 31 pandemics comprising 15 concurrent epizootics (48%), and 18 277 

regional epidemics comprising 6 concurrent epizootics (33%, Figure 2A). Epizootic frequencies were not 278 

significantly different between outbreak categories (Chi-square: X2 = 1.1, p = 0.30, df = 1). Equine 279 

epizootics accounted for 76% (n = 16/21) of all concurrent influenza epizootics (Figure 2B). 280 
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 281 

Figure 2. Influenza pandemic and regional epidemic outbreaks between 1500 and 2018. (A) Database summary 282 

of the influenza pandemic and major regional epidemics +/-concurrent epizootics/zoonosis, and Cat.A&B outbreaks, 283 

from 1500- and 1700- to 2018. (B) Summarizes the total number of pandemics and major regional epidemics (1500-284 

2018), and the number and percentage of outbreaks associated with concurrent epizootics/zoonosis (zoonosis proxy). 285 

This summary information was derived from the Table S1 (Supplementary materials, Figshare DOI). Outbreak 286 

database reviews [5]Ð[11]. 287 

Geographic origination was confirmed for 49 of 49 outbreaks, either emphatically (n = 45) or 288 

ambivalently (n = 4, Europe or Nth. America?). Where geographic origination was specified, it was 289 

concentrated in Europe (EUR n = 21, including Russia n = 5), the Americas (AMR, primarily North 290 

America, n = 15), and Asia (n = 8 WPR and SEAR, incl. China n = 4 since 1830) (Figure 3).  291 
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Figure 3. The geographic origination of influenza outbreaks +/-concurrent epizootics/zoonosis. Summary of 293 

the influenza outbreak database detailing the geographic origin of pandemics and major regional epidemics +/-294 

concurrent epizootics/zoonosis between 1500 and 2018. This summary information was derived from the S1 Table 295 

(Supplementary materials, Figshare DOI). Outbreak database reviews [5]Ð[11]. 296 

All influenza pandemics from the 1918 Spanish flu, including 1946, 1957, 1968, 1977, and 2009 297 

pandemics, the 1976 swine flu epidemic (USA zoonosis, confirmed human-to-human transmission), as 298 

well as the first avian H5N1 (1997) and H7N9 (2013) zoonosis, all occurred within one year of the SSN 299 

peak or trough. This SSN peak and trough association was shared by 76% of all outbreaks since 1700 (n = 300 

26/34). Forty-one to 44% of outbreak categories comprising pandemics occurred at the SSN peak +/-1-301 

year and 35-36% at the SSN trough +/-1-year.  302 

Simple logistic regression analysis demonstrated the probability of a pandemic was significantly higher 303 

within P01, T01, and P01+T01 stages than P_T+T_P stages of the 11-year solar cycle (n = 24/27 304 

comparisons P<0.050, n = 2/27 with P = 0.051 and 0.056, and n = 1/27 with P = 0.08 for cycles defined 305 

by SSN, GSSN, and TSI periodicities). These probabilities translated into a mean Odds ratio (OR) of 2.9 306 

(T01), 3.3 (P01), and 3.1 (P01+T01) compared with the P_T+T_P, averaged across all SSN, GSSN, and 307 

TSI cycles and categories comprising pandemics, or a mean OR = 3.1 for all SSN, GSSN, TSI, stages and 308 

categories comprising pandemics. The S2 Table contains a summary of the beta coefficients, P-values, 309 

stage probabilities (p), and Odds ratios (OR) and 95% confidence intervals. The Figure 4 summary 310 

information was derived from S2-S4 Tables. 311 
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 312 

Figure 4. Solar cycle stage grouping outbreak probabilities and Odds ratios. (A) Odds ratios for P01 (peak +/-1 313 

year), T01 (trough +/-1 year), and combined P01+T01, compared with the inter-peak-trough plus inter-trough-peak 314 

stages (P_T+T_P), for solar cycles defined by SSN, GSSN, and TSI T_T periodicities, for different categories of 315 

pandemics (Cat. A&B, Cat. A, and pandemics +/-concurrent epizootics/zoonosis). The Asterix above each P01, T01, 316 

and P01+T01 Odds ratio bar indicates a significant difference over P_T+T_P stage probabilities (p<0.050). This 317 

data was derived from the S2 Table, which in turn was derived from S3 Table. (B) The number of influenza 318 

outbreaks by SSN cycle stage groupings for different categories of influenza outbreaks and the number of years in 319 

each stage grouping (far right bar). These results were derived from the S4 Tables (supplementary materials, 320 

Figshare DOI). Data citations: Outbreak database reviews [5]Ð[11]. Publicly available independent variable data 321 

[55], [56], [62]. 322 

The Fisher's exact test results showed there were no significant differences in solar cycle stage frequency 323 

distributions between pandemics and epidemics +/-epizootic (all P"0.20, except one P = 0.12, S5 Table).  324 

Simple logistic regression analysis revealed non-timing risks factors 325 

There was a higher probability of an outbreak during sustained (1-11yr SMA) cooling (-GT¡C, -NHT¡C 326 

anomalies) and glaciation periods (-SIC crustal algal growth = increased sea ice cover, +IAR anomalies), 327 

relative to their respective RPM. Significant negative regression coefficients were obtained between 328 

GT¡C and Cat.A& B outbreaks (all B = -0.6, all P<0.04, n = 48, 1Ð11-year SMA, 1500-), and with 329 
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NHT¡C and epidemics +/-epizootic since 1500 (all B = -2.8 to -3.1, all P = 0.01, n = 18, 1Ð11-year SMA) 330 

and 1700 (all B = -3.4 to -3.6, all P = 0.01, n = 9, 1Ð11-year SMA). A significant negative coefficient 331 

indicates a reduced outbreak probability as the GT¡C and/or NHT¡C increased above the RPM, and vice 332 

versa. Results in this section refer to Table 1 and S6 Table (supplementary materials, Figshare DOI). 333 

Table 1. Coefficients of simple logistic regression and P-values by outbreak category 334 

Outbreak A&B  Epi*  Epi*  Epi*  Epi*  Epi*  A&B  A Pan* Epi*  A&B  Epi*  Epi*  Epi*  Epi*  Epi*  Epi*  Pan* Epi*  Pan* 
Start 
Year 

1500 1500 1700 1610 1700 1700 1700 1700 1700 1500 1700 1700 1700 1700 1610 1500 1700 1610 1500 1500 
Variable GT¡C  NHT¡

C 
NHT¡

C 
TSI CRI  MeV SIC SIC SIC IAR  CRI  TSI SSN GSSN GSSN Be10 Be10 TSI MeV MeV 

Raw 
Data 

-0.6 -2.8 -3.4 -1.6 6.1 -0.01 -0.9 -0.9 -0.8 12.5     -0.3   0.8  0.002 
(0.04) (0.01) (0.01) (0.02) (0.002) (0.02) (0.01) (0.02

) 
(0.04
) 

(0.04
) 

    (0.04)   (0.048)   (0.02) 
2yr 
SMA 

-0.6 -2.9 -3.4 -1.4 6.5 -0.01 -0.8             0.001 
(0.04) (0.01) (0.01) (0.03) (0.001) (0.02) (0.052)              (0.04) 

3yr 
SMA 

-0.6 -2.9 -3.4 -1.4 6.6 -0.01     1.8     1.1 1.6    
(0.04) (0.01) (0.01) (0.04) (0.001) (0.02)     (0.04)     (0.04) (0.03)      

4yr 
SMA 

-0.6 -2.9 -3.4 -1.4 6.6 -0.01 -1.0    2.0 -2.5         
(0.03) (0.01) (0.01) (0.04) (0.001) (0.02) (0.04)    (0.02) (0.05)           

5yr 
SMA 

-0.6 -3.0 -3.5 -1.4 6.7 -0.01 -1.0    2.2 -2.7 -0.02 -0.4 -0.3      
(0.03) (0.01) (0.01) (0.04) (0.000) (0.02) (0.03)    (0.01) (0.04) (0.047) (0.04) (0.049

) 
       

6yr 
SMA 

-0.6 -3.0 -3.5 -1.5 6.7 -0.01 -1.1   41.3 2.3 -2.9 -0.03 -0.5 -0.3  1.7    
(0.03) (0.01) (0.01) (0.03) (0.000) (0.01) (0.03)   (0.02

) 
(0.01) (0.03) (0.02) (0.02) (0.03)  (0.051)      

7yr 
SMA 

-0.6 -3.0 -3.5 -1.5 6.5 -0.01 -1.0    2.3 -3.2 -0.03 -0.5 -0.3      
(0.03) (0.01) (0.01) (0.03) (0.000) (0.01) (0.047)    (0.01) (0.02) (0.01) (0.02) (0.04)        

8yr 
SMA 

-0.6 -3.0 -3.5 -1.6 6.5 -0.01 -1.0    2.3 -3.4 -0.04 -0.6 -0.3      
(0.04) (0.01) (0.01) (0.02) (0.000) (0.01) (0.054)    (0.02) (0.02) (0.01) (0.02) (0.03)        

9yr 
SMA 

-0.6 -3.0 -3.5 -1.6 6.6 -0.01     2.2 -3.5 -0.04 -0.6 -0.4      
(0.04) (0.01) (0.01) (0.03) (0.000) (0.01)     (0.02) (0.02) (0.01) (0.01) (0.01)        

10yr 
SMA 

-0.6 -3.1 -3.5 -1.6 5.9 -0.01      -3.8 -0.04 -0.7 -0.5    -0.003  
(0.04) (0.01) (0.01) (0.03) (0.002) (0.01)      (0.01) (0.01) (0.01) (0.01)    (0.049)   

11yr 
SMA 

-0.6 -3.1 -3.6 -1.6 6.2 -0.01      -3.9 -0.04 -0.7 -0.5    -0.003  
(0.04) (0.01) (0.01) (0.02) (0.001) (0.005

) 
     (0.01) (0.01) (0.01) (0.01)    (0.049)   

Years (n) 494 501 301 409 308 302 311 311 311 481 308 319 319 316 406 481 286 409 502 502 
Outbreak
s (n) 

48 18 9 15 9 9 34 28 25 18 33 9 9 9 15 18 9 28 18 30 

Coefficients of simple logistic regression and P-values (bracketed, below) for an array of solar activity and climate 335 

change variables (raw data, 2Ð11-year SMA), and different categories of influenza outbreaks between 1500- or 336 

1700- and up to 2018. This summary results table was derived from R results in S6 Table (supplementary materials, 337 

Figshare DOI). Data citations: Outbreak database reviews [5]Ð[11]. Publicly available independent variable data 338 

[55]Ð[59], [62]Ð[65]. 339 

The Arctic crustal algal growth anomaly (sea ice cover proxy, SIC) raw data yielded significant negative 340 

regression coefficients for all categories comprising pandemics since 1700 (all B = -0.8 to -0.9, all P = 341 

0.01-0.04, Cat.A&B  n = 34, Cat.A n = 28, pandemic +/-epizootic n = 25), and with Cat.A&B outbreaks 342 
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and SIC 4Ð7-year SMA anomalies (all B = -1.0 to -1.1, all P = 0.03-0.047, n = 34). A negative coefficient 343 

indicates a reduced outbreak probability as the SIC crustal algal growth increased above the RPM 344 

(meaning less sea ice), and vice versa. A significant positive regression coefficient was obtained with the 345 

ice accumulation rate (IAR) anomaly and epidemics +/-epizoo since 1500 (B = 12.5 and 41.3, P = 0.04 346 

and 0.02, n = 18, raw data and 6-year SMA). A positive coefficient indicates an increased outbreak 347 

probability as the IAR increased above the RPM (Greenland glacier growth), and vice versa. 348 

There was a higher probability of an outbreak during periods of low solar activity. Significant negative 349 

regression coefficients were obtained with epidemics +/-epizoo and TSI since 1610 (all B = -1.4 to -1.6, 350 

all P = 0.02-0.04, 1Ð11-year SMA, n = 15) and 1700 (B = -2.5 to -3.9, P = 0.01-0.05, 4Ð11-year SMA). 351 

Significant negative regression coefficients were also obtained between epidemics +/-epizoo and SSN (all 352 

B = -0.02 to -0.04, all P = 0.01-0.047, 5Ð11-year SMA, n = 9, 1700-), and with GSSN since 1610 (all B = 353 

-0.3 to -0.5, all P = 0.01-0.049, 1-year and 5Ð11-year SMA, n = 15) and 1700 (all B = -0.4 to -0.7, all P = 354 

0.01-0.04, 5-11 year SMA, n = 9). Negative coefficients indicate a decreasing outbreak probability as the 355 

TSI, SSN, and GSSN increased above the RPM, and vice versa. The P-value significance level increased 356 

with data smoothing for these solar activity-cycle variables (from 5 to 11yr SMA). 357 

Significant positive regression coefficients were yielded between CRI and Cat.A& B (all B = 1.8-2.3, all P 358 

= 0.01-0.04, 3Ð9-year SMA, n = 33) and epidemics +/-epizootics (all B = 5.9-6.7, all P<0.01, 1Ð11-year 359 

SMA, n = 9) since 1700. Significant positive regression coefficients were also obtained for 10Be and 360 

epidemics +/-epizoo since 1500 (B = 1.1, P = 0.04, 3-year SMA, n = 18) and 1700 (B = 1.6, P = 0.03, n = 361 

9, 3-year SMA). A positive coefficient indicated an increasing outbreak probability as the CRI and 10Be 362 

increased above the RPM (low solar-/geo-magnetic activity), and vice versa. 363 

Simple linear regression analysis confirmed outbreak risk factors 364 

There was a grand mean 0.08-0.11 outbreaks per solar cycle year across all influenza outbreak categories 365 

comprising pandemics (SE = 0.01-0.02 years or approximately 16% of their respective means, 1711-366 
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2008). This equated to a mean outbreak interval of 9 years (Cat.A&B), 10.7 years (Cat.A) and 12.1 years 367 

(pandemics +/-epizoo), or 1.2, 1.0, and 0.9 outbreaks respectively per mean 11-year solar cycle defined 368 

by SSN, GSSN, and TSI T_T periods (Figures 5A and B). Data is detailed in S7 Table.  369 

 370 

Figure 5. The mean number of influenza pandemics per year and solar cycle duration. (A) The mean number 371 

of influenza pandemics (different categories) per solar cycle year since 1700 for SSN, GSSN, and TSI cycle T_T 372 

periods, with standard error bars (mean of means). The reciprocal of the yearly outbreak rate was the mean interval 373 

between outbreaks (detailed in the legend, right of graphic). (B) The mean solar cycle duration since 1700 derived 374 

from SSN, GSSN, TSI, CRI, and MeV trough-trough periods (years), with standard deviation bars. These graphics 375 

were derived from S7 Table (supplementary materials, Figshare DOI). Data citations: Outbreak database reviews 376 

[5]Ð[11]. Publicly available solar activity cycle data used [55]Ð[58], [62]. 377 

Simple linear regression analysis confirmed the ability of cycle mean variable anomalies to predict the 378 

mean number of outbreaks per cycle year since 1700. Significant negative regression coefficients were 379 

obtained for cycle mean GT¡C and mean Cat.A&B outbreaks per year (all B = -0.05 to -0.06, all P = 0.01-380 

0.03, n = 26-27 SSN, GSSN, TSI, and CRI cycle T_T periods, or cycles), and mean pandemics +/-epizoo 381 

per cycle year (B = -0.04, P = 0.04, n = 27 TSI cycles). Significant negative regression coefficients were 382 

also yielded between mean cycle NHT¡C and mean Cat.A&B outbreaks per year (B = -0.15 and -0.16 and 383 

P = 0.03 and 0.02, n = 27 and 26 TSI and CRI cycles respectively), and mean epidemics +/-epizootics per 384 

year (B = -0.10, P = 0.03, n = 27 TSI cycles). This indicates cycles (esp. CRI, TSI) with a mean GT¡C 385 
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and NHT¡C anomaly greater than the RPM were associated with a lower pandemic and/or epidemic 386 

outbreak per cycle year probability, and vice versa. This section refers to Table 2 and S8 Table. 387 

Table 2. Regression coefficients and P-values (mean cycle variable, mean outbreaks per cycle year). 388 

Category A&B  Pan* A& B Epi*  A&B  A Pan* Pan* Epi*  Epi*  A&B  Epi*  Pan* Epi*  
Independent 
Variable 

GT¡C  GT¡C  NHT¡C  NHT¡C  SIC SIC SIC IAR  IAR  Be10 CRI  CRI  MeV TSI 
Solar cycle defined by: 

SSN (1711-2008, 
27 T_T cycles) 

-0.05    -0.11     0.07     
(0.03)    (0.01)     (0.03)     

GSSN (1711-2008, 
27 T_T cycles) 

-0.06    -0.10     0.07     
(0.01)    (0.01)     (0.03)     

TSI (1712-2008, 27 
T_T cycles) 

-0.05 -0.04 -0.15 -0.10 -0.11    -1.97 0.09    -0.09 
(0.03) (0.04) (0.03) (0.03) (0.01)    (0.04) (0.02)    (0.05) 

CRI (1721-2000, 26 
T_T cycles) 

-0.05  -0.16  -0.09 -0.08 -0.07    0.23 0.13   
(0.02)  (0.02)  (0.01) (0.03) (0.04)    (0.03) (0.01)   

MeV (1709-1997, 
24 T_T cycles) 

       2.63     0.0002  
       (0.04)     (0.01)  

Coefficients of simple linear regression are summarized for an array of cycle mean independent variables and the 389 

cycle mean number of outbreaks per year for cycles defined by SSN, GSSN, TSI, CRI, and MeV trough-to-trough 390 

(T_T) periods since 1700. Regression coefficients are placed above the bracketed P-values. This data summary was 391 

derived from the R results in S8 Table (supplementary materials, Figshare DOI). Data citations: Outbreak database 392 

reviews [5]Ð[11]. Publicly available independent variable data [55]Ð[59], [62]Ð[65].  393 

Significant negative regression coefficients were obtained between cycle mean SIC and mean Cat.A&B 394 

outbreaks per cycle year (all B = -0.09 to -0.11, all P = 0.01, n = 26-27 SSN, GSSN, TSI, and CRI cycles), 395 

and with Cat.A and pandemics +/-epizoo outbreaks (B = -0.08 and -0.07, P = 0.03 and 0.04 respectively, 396 

n = 26 CRI cycles). A significant positive regression coefficient was obtained between cycle mean IAR 397 

and mean pandemics +/-epizootics per cycle year (B = 2.63, p = 0.04, n = 24 MeV cycles). By contrast, a 398 

significant negative regression coefficient was yielded between cycle mean IAR and mean epidemics +/-399 

epizootics per cycle year (B = -1,97, p = 0.04, n = 27 TSI cycles). 400 

A significant positive regression coefficient was obtained with mean CRI cycle anomalies and mean 401 

Cat.A&B outbreaks per cycle year (B = 0.23, P = 0.03) and with mean epidemics +/-epizoo per cycle year 402 

(B = 0.13, P = 0.01) for cycles defined by CRI T_T periods (n = 26). Significant positive regression 403 

coefficients were yielded for mean 10Be cycle anomalies and mean epidemics +/-epizoo per cycle year (all 404 
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B = 0.07-0.09, all P = 0.02-0.03, n = 27 SSN, GSSN, and TSI cycles). A significant positive coefficient 405 

meant there was an increased cycle outbreak rate (per year) as the cycle mean value increased above the 406 

RPM, and vice versa. Correspondingly, a significant negative coefficient meant there was a lower 407 

outbreak rate (per year) as the cycle mean value increased above the RPM, and vice versa. 408 

Outbreak distribution by quartile grouping  highlights risk factors  409 

The mid-study (1750 +/-) broadly coincided with the coldest and lowest solar activity period, while the 410 

mid-RPM broadly coincided with the warmest and highest solar activity period, during the study period. 411 

The NHT¡C anomaly (1500-2000) was at its deepest 30-year SMA trough in 1718 and at its tallest 30-412 

year SMA peak in 1962, while the GT¡C anomaly (1500-1993) was at its deepest 30-year SMA trough in 413 

1775 and peaked in 1955 (30-year SMA). The 10Be anomaly (1500-1994) reached its 30-year SMA peak 414 

in 1721 (period of lowest solar-/geo-magnetic activity) and its deepest trough in 1964 (period of highest 415 

solar-/geo-magnetic activity), while the TSI anomaly (1610-2018) reached its deepest 30-year SMA 416 

trough in 1675 and reached its 20th century peak in 1964.  417 

The percentage of negative independent variable anomalies and outbreaks associated with negative 418 

anomalies are detailed in Figure 6, which summarized co-plots of Cat.A&B outbreaks and all IVs (S9 419 

Figure A-J, Supplementary materials). The majority of the temperature (GT¡C 74%, NHT¡C 90%) and 420 

solar activity variables (TSI 71%) were below or above (CRI 81%, 10Be 68%) their respective 1961-1990 421 

RPM. Forty-five of 49 (92%) outbreaks occurred before the RPM and three during the RPM (7.7%).  422 
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 423 

Figure 6. Percentage of negative anomalies and outbreaks associated with negative anomalies. This figureÕs 424 

data summarizes the linear plots for each independent variable and Cat.A&B outbreaks, which are contained in S9 425 

Figure A-J (supplementary materials, Figshare DOI). For perspective, the 1961-1990 RPM, by which most variable 426 

anomalies were derived, represented a period near the hot-end of a multi-century Arctic and Northern Hemisphere 427 

warming phase that started in the early-mid 18th century in the depths of the Little Ice Age (mid-study). Data 428 

citations: Outbreak database reviews [5]Ð[11]. Publicly available independent variable data [55]Ð[59], [62]Ð[65]. 429 

Chi-square (X2) and FisherÕs exact (Odds ratio, OR) test values associated with p<0.05 (Òa significantly 430 

higher proportionÓ), and their degrees of freedom (X2 all df = 1. OR all df = not applicable) are 431 

summarized in S10 Table and were derived from S11 Table, which applies to this section. A significantly 432 

higher proportion of categories comprising Cat.A outbreaks (SIC, 1500-, 1700-) and epidemics +/-433 

epizootics (GSSN, 1500-) occurred with Òall negative versus all positiveÓ anomaly quartile-groupings. 434 

Significant test values were yielded for Òlarge negative versus all positiveÓ quartile-grouping proportions 435 

for epidemics +/-epizootics and NHT¡C (1700-), TSI (1500-), and MeV (1700-). At the other extreme, a 436 

significantly higher proportion of outbreaks occurred with Òlarge positive versus all negativeÓ quartile 437 

groupings between epidemics +/-epizootics and IAR (1500-) and CRI (1500-, 1700-), and with MeV and 438 

pandemics +/-epizootics (1500-). 439 

A significantly higher proportion of outbreaks occurred with Òlarge plus medium negative versus all 440 
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positiveÓ quartile-groupings for categories comprising pandemics (SIC, 1500, 1700-) and with epidemics 441 

+/-epizootics (GSSN, 1500-). At the other extreme, significant test values were obtained for Òlarge plus 442 

medium positive versus all negativeÓ quartile-groupings for categories comprising pandemics (GT¡C, SIC 443 

IAR, SSN, MeV, 1500- and/or 1700-). A significantly higher proportion of outbreaks occurred with 444 

Òlarge plus medium negative versus large plus medium positiveÓ anomaly quartile-groupings for 445 

Cat.A&B and GT¡C (1500-, 1700-), epidemics +/-epizootics with GT¡C (1500-) and MeV (1700-), and 446 

with Cat.A&B and Cat.A and SIC (1700-). 447 

Multiple  logistic regression confirmed outbreak predictors  448 

This section reviews the best stepwise models (best models), and all best and short-listed models with "1 449 

P<0.05 predictor (All -models) across all outbreak categories. This section refers to Table 3 and S12-13 450 

Tables. Solar-/geo-magnetic and electromagnetic activity-related variables accounted for the majority of 451 

significant and marginal predictors for All -models. Each category best model with the lowest AIC value 452 

was achieved when IVs were smoothed between 9 and 11 years.  453 

Table 3. Multiple  logistic regression best model and variance inflation factor summary results. 454 

(A) Lowest AIC, 
Outbreak category 
Pr(>|z|)<0.05, and 
<0.16 

!  estimate 
sign: +ve 
or Ðve 

Cat. 
A&B  

Cat. A Pan* Cat. 
B 

Epi*  (B) Variance 
Inflation Factor 
(VIF)  

Cat. 
A&B  

Cat. 
A 

Pan* Cat. 
B 

Epi
*  

Avg
. 
VIF  

SA MAV period 
(years) 

 11 9 10 11 11        
Intercept -ve             
10Be anom. -ve    0.12 0.07 10Be anom. 3.7 2.9 3.0 93 22 25 
CRI anom. +ve    0.04  CRI anom. 12 7 8 634 30 138 
MeV anom. -ve     0.03 MeV anom. 3.0 2.5 2.7 159 8 35 
TSI anom. +ve    0.10 0.04

6 
TSI anom. 3.7 3.3 3.5 30 9 10 

NHT¡C anom. +ve      NHT¡C anom. 15 10 11 35 32 20 
GT¡C anom. -ve     0.10 GT¡C anom. 5.2 4.3 4.9 61 8 17 
SIC anom. -ve 0.16     SIC anom. 3.0 3.2 3.2 11 4.5 5.0 
IAR anom. +ve    0.06 0.10 IAR anom. 1.3 1.4 1.4 11 2.2 3.4 
SSN_dummy_P+T +ve 0.04 0.049 0.04   SSN_dummy_P

+T 
1.0 1.0 1.0 2.1 1.2 1.3 

AIC  150.8 135.4 124.
5 

31.5 52.5 Avg.  VIF 5.3 4.0 4.4 115 13 28 
Cox Snell pseudo-
R2 

 0.03 0.02 0.02 0.08 0.06        
Number  219 229 224 219 219        

(A) Multiple logistic regression best model summaries for each outbreak category (all stepwise, backward method). 455 

Each best model summarizes significant and marginal model predictors, provides the sign of the # estimate (positive 456 

or negative impact on outbreak probability as the variable increases, and vice versa), and represented the lowest AIC 457 
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value in its category. (B) The variance inflation factor (VIF) was used to assess multi-collinearity. Best model 458 

summaries from R are provided in the S12 Table and an All-model summary in S13 Table (supplementary materials, 459 

Figshare DOI), which summarize all 55 short-listed models with "1 significant variable. Data citations: Outbreak 460 

database reviews [5]Ð[11]. Publicly available independent variable data [55]Ð[59], [62]Ð[65]. 461 

Solar-/geo-magnetic and electromagnetic activity related predictors accounted for between 100% 462 

(Pr(>|z|)<0.05, 6/6 IVs, n = 5 models) and 69% (Pr(>|z|)<0.16, 9/13 IVs, n = 5 models) of all best model 463 

predictors, and between 78% (Pr(>|z|)<0.05, n = 43/55) and 67% (Pr(>|z|)<0.2, n = 80/120) of All -models. 464 

The SSN T01+P01 dummy variable was a significant predictor in all three best models and in 31 of 33 465 

potential All -model occurrences, over the three categories comprising pandemics (Pr(>|z|)<0.2). In 466 

contrast, the SSN T01+P01 dummy variable was not a significant or marginal predictor for Cat.B and 467 

epidemic +/-epizootic categories in All -models. Contrastingly, CRI featured in 20/22 All -model potential 468 

occurrences with Cat.B and epidemics +/-epizootics (Pr(>|z|)<0.05). All  three significant best model 469 

epidemic predictors were solar-/geomagnetic and electromagnetic activity related (CRI, MeV and TSI). 470 

Climate change predictors did not feature to the same degree as solar activity related predictors in All -471 

models. There were no significant best model climate change predictors (all Pr(>|z|) = 0.06-0.16, n = 4 of 472 

13 IVs), while three of the four marginal climate change predictors were associated with categories 473 

comprising epidemics. However, climate change variables accounted for 22% (all Pr(>|z|)<0.050, n = 474 

12/55) and 33% of All -model predictors (all Pr(>|z|)<0.2, n = 40/120), including SIC (n = 14), NHT¡C 475 

and IAR (n = 10), and GT¡C (n = 6) anomalies. Best model and All-model variance inflation factors 476 

(VIF) highlighted a complex issue of multi-collinearity with solar activity  (CRI, MeV, 10Be, TSI) and 477 

climate change predictors (NHT, GTC, SIC, and IAR), especially with epidemic categories (see next). 478 

Multi -collinearity implicated solar activity correlated climate change 479 

Basic analysis confirmed normal data distributions (skewness within +/-2) and peakedness (kurtosis 480 

within +/-7) for all independent variables (S14 Table, Supplementary materials). Pearson correlation 481 
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coefficients between regression model IVs (plus GMA-AA) are summarized in Figure 7A and 7B. Of 495 482 

correlation permutations assessed 363 (73%) were P<0.001, 40 were p>0.001 and <0.05 (8.1%) and 92 483 

were non-significant (19%). This correlation analysis highlighted medium-to-high correlations involving 484 

solar-/geo-magnetism (esp. CRI, 10Be) and solar electromagnetism (TSI), with climate change variables: 485 

NHT¡C with CRI, 10Be, GMA and TSI anomalies; GT¡C with CRI, 10Be, GMA, NHT, SIC and SSN 486 

anomalies; SIC with GMA anomalies. These correlations increased with data smoothing (negative r: avg. 487 

r = -0.45 increased to r = -0.70, n = 9 comparators. positive r: avg. r = 0.43 increased to r = 0.65, n = 9 488 

comparators, 1 to 11yr SMA (Figure 7A and 7B, S15 Table, Supplementary materials).   489 

 490 

Figure 7. Pearson correlation coefficients between solar activity and climate change outbreak predictors. 491 

Graphically displayed Pearson correlation coefficients for key solar-/geo-magnetic variables versus solar-/geo-492 

magnetic, solar electromagnetic, and climate change variables, and climate change versus climate change variables 493 

(1Ð11-year SMA, both variables). Correlation coefficients and associated data are provided to the right of each 494 

figure (A) and (B) legend and in the S15 Table (supplementary materials, Figshare DOI). A linear- and scatter-plot 495 

of an 18-year SMA 10Be versus NHT¡C raw data anomalies (1406-1994) is provided in S16 Figure (supplementary 496 

materials, Figshare DOI). This figure demonstrates that all Little Ice Age grand solar minimum periods paralleled a 497 

sustained NHT¡C cooling, while these variables counter-tracked each otherÕs large volatilities over decadal to 498 

centennial time scales up to the post-RPM period. Data citations: Publicly available independent variable data [55], 499 

[57]Ð[60], [62]Ð[65]. 500 
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The best model1 and All-model2 mean variance inflation factors for CRI (VIF = 1381, 412), MeV (VIF = 501 

351, 122), 10Be (VIF = 251, 62), NHT¡C (VIF = 201, 132), GT¡C (VIF = 171, 72), and overall (mean VIF = 502 

281, 102) are provided in Table 3B1 and S13 Table2 (B). Multi-collinearity was most evident with Cat.B 503 

outbreaks (mean VIF = 1151, 322) and epidemics +/-epizootic (mean VIF = 131, 72), two-thirds of which 504 

originated in Europe. This level of multi-collinearity indicates potential suppressor-interaction effects 505 

between model predictors. This high VIF data (>10) reflects the high-increasing Pearson correlation 506 

coefficients (from 1 to 11-year SMA) between the solar-/geo-magnetic proxies, especially CRI (assessed 507 

at earthÕs orbit) and 10Be (Greenland ice core derived), with the terrestrial-derived climate change 508 

proxies NHT¡C (Greenland ice core derived), SIC (Arctic), and GT¡C (Greenland ice core). 509 

Re-calibrating outbreak risks relative to the Climate Optimum 510 

This section refers to Figure 8, and S17 Table and S18 Figure (16 annotated ice core temperature plots). 511 

The Little Ice Age (LIA) GT¡C temperature nadir was reached by mid-study in 1761, which occurred 512 

7,771 years after and was -5.9¡C below the Holocene Climate Optimum (HCO) peak temperature (6010 513 

BCE) [64]. The Vinther 11,700-year Greenland ice core LIA temperature nadir was reached in 1700, 514 

which occurred 7,680 years after and was -4.9¡C below the HCO (5980 BCE) [67]. Similarly, the mean of 515 

nine Greenland ice cores (Buizert) show the LIA temperature nadir was reached 1802 (SD = 72 years), 516 

which occurred a mean 7,307 years after (SD = 920) and was a mean -5.0¡C (SD = 1.0¡C) below the 517 

HCO peak temperature. This mean 5.0¡C decline represented 21% of the prior Holocene interglacial 518 

increase in absolute terms. During the Holocene interglacial period the temperature increased by a mean 519 

23.1¡C in a mean 9,844 years (mean LGM 15,349 BCE and HCO 5,504 BCE) [69].  520 
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 521 

Figure 8. The GT¡C mid-study climate benchmarked against 15 polar ice cores. (A) Temperature changes 522 

between glacial cycle landmarks are provided for 16 polar ice cores, including the GT¡C data used in this outbreak 523 

risk factor study. Inter-landmark periods include: (i) the Holocene interglacial period between the Last Glacial 524 

Maximum (LGM) and Holocene Climate Optimum (HCO), or the coldest glacial cycle (GC) temperature to the 525 

hottest temperature (or anomaly, ¡C), (ii) the HCO to Little Ice Age (LIA)  temperature nadir, or peak glacial cycle 526 

temperature to lowest temperature after the HCO during the LIA period. (B) The ice age entry percentage 527 

corresponds with the temperature decline between the HCO and LIA (by mid-study) divided by the Holocene 528 

interglacial temperature increase between the LGM and HCO. See S17 Table for the data table underpinning these 529 

graphics (supplementary materials, Figshare DOI). Data citations: Publicly available polar ice core data [64], [67]Ð530 

[73]. 531 

From the LIA temperature nadir (1761) to mid-RPM (1975) the GT¡C then increased 1.5¡C in 214 years, 532 

and the Vinther Greenland ice core temperature increased 2.3¡C in 260 years from 1700. This means that 533 

by 1975 and 1960 Greenland was still 4.4¡C and 2.5¡C colder than at the HCO 7.8kyr and 7.7kyr 534 

beforehand respectively. The Buizert Greenland ice cores showed a mean 2.4¡C increase in 178 years 535 

from the LIA temperature nadir to the mid-RPM (SD = 0.3¡C, n = 9). Despite this warming oscillation, 536 

BuizertÕs nine Greenland ice cores were still a mean 2.6¡C lower (SD = 1.0¡C) than at the HCO peak 537 

temperature 7.5kyr prior, or 11% of their mean Holocene interglacial increase in absolute terms.  538 

In Antarctica, the temperature declines between the HCO peak temperature and LIA temperature nadir at 539 

Dome-C (Jouzel), Vostok (Lorius), Dome Fuji (Uemura) represented 36%, 19% and 15% respectively of 540 

their respective Holocene interglacial increases in absolute terms. 541 
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Discussion 542 

In general, across all analytical methods (1500-, 1610-, 1700-), pandemics (with a SSN P01+T01 trigger) 543 

and epidemics (with a +CRI anomaly trigger) were associated with periods of sustained (1-11 years, 11-544 

year cycle means) and/or extreme +/-medium quartile periods of: (1) low solar-/geo-magnetic activity 545 

(proxied by +CRI, +10Be, -MeV, -SSN, and -GSSN anomalies) and electromagnetic activity (proxied by 546 

ÐTSI anomalies), and (2) cold-glaciating climate change implicating Greenland (proxied by -GT¡C, -SIC-547 

algal growth, and +IAR anomalies) and Northern Hemisphere regions (proxied by -NHT¡C anomalies).  548 

Four categories of outbreak risk factors putatively implicating Òimmunological susceptibility and induced 549 

immunosuppressionÓ were identified. These included 11-year solar cycle extremes, low solar and 550 

geomagnetic activity, Arctic cold and glaciation (mid-study was the coldest-iciest period 8-kiloyears after 551 

the glacial cycle peak temperature) and geographic risk (Europe, North America, Russia, China). The 552 

database and each risk factor are reviewed and compared with prior studies and given relevant context via 553 

the literature. The putative means by which risk factors were linked to Òimmunological susceptibility and 554 

regional-scale induced immunosuppressionÓ are also reviewed. 555 

Influenza outbreak database review 556 

On a comparable basis since 1700, this studyÕs database method confirmed geographical extent for 25 557 

pandemics and nine regional epidemics, and detailed 15 concurrent epizootics/zoonosis (seven reviews). 558 

This compared with TappingÕs 15-21 pandemics (two reviews), ErtelÕs 25 pandemics (10 reviews), 559 

YeungÕs 15 pandemics and possible pandemics (five reviews), while Qu utilized YeungÕs uncertain list. 560 

This methodology resolved expert review differences in outbreak classifications (9 instances), while 561 

eliminating uncertainty for 21 instances of ÔpossibleÕ pandemics in 157 pooled outbreak assignations. In 562 

line with all prior studies and historical records, stated outbreaks may not all have been influenza-A, but 563 

could have been other pathogens behaving like and described as influenza. This pathogen-etiology 564 

uncertainty was more likely before 1700 due to heterogeneous disease terminologies and a relative 565 



  

28 / 47 

paucity of detailed records by physicians. This inherent uncertainty directed the dual analysis from 1500- 566 

and 1700- (3/5 analytical methods started from 1700 anyhow). 567 

A surprise discovery was that since 1500 both pandemics and regional epidemics were frequently 568 

associated with concurrent influenza epizootics (76% equine associated), which was not significantly 569 

different in frequency between these outbreak categories. This concurrent-equivalent epizootic finding 570 

between pandemics and epidemics goes against conventional wisdom, in which epidemics were said to be 571 

associated with viral mutation of seasonal-endemic IAV subtypes (antigenic drift), while pandemics were 572 

said to be associated with zoonosis and/or IAV  reassortment (antigenic shift) [6], [10], [89]. This finding 573 

indicates some regional epidemics +/-epizootics were different from seasonal-endemic influenza. 574 

Alternatively, they could have represented outbreaks whose global spread was thwarted, or represented 575 

EuropeÕs special case with epidemics (see discussion on multi-collinearity), or epidemics before 1825 576 

were pandemics incompletely recorded in the global record (mild outbreaks), or combinations thereof.  577 

Outbreak timing  risk factor s (solar cycle peaks and troughs) 578 

Pandemics were periodically inescapable on an 11-year solar cycle basis, while solar cycles were 579 

relatively predictable. There was roughly one pandemic per 11-year solar cycle since 1700, with three-580 

quarters of these occurring within one year of the cycle peak and trough. There was good agreement 581 

between simple and multiple logistic regression in identifying sunspot number P01 and/or T01 solar cycle 582 

stages as timing risk factors. Multiple regression analysis confirmed the SSN P01+T01 dummy variable 583 

as a significant pandemic predictor in all three best models and 31/33 short-listed models, suggesting SSN 584 

cycle extremes +/- 1-year were a pandemic trigger. By contrast, significance was not achieved for 585 

P01+T01 stages with epidemics (all 22 models), potentially reflecting the smaller numbers of epidemics 586 

compared with pandemics (n = 9 -v- 25, 1700-) and/or having different triggers (CRI, see geographic 587 

risks). These results confirm Hope-SimpsonÕs original observation on pandemic peak timing, and study 588 

conclusions by Tapping, Ertel, Yeung, and Qu claiming a link between SSN extremes and pandemic risk.  589 
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The theoretical case for solar-/geo-magnetic modulation of circadian-immuno-inflammatory biology 590 

merits consideration in explaining this timing risk data. As introduced, an 11-year SSN P01+T01 591 

concentration of outbreaks potentially implicate changes in solar magnetic polarity and/or heliospheric 592 

magnetic flux [14], [17], [61]. Theoretically, magnetoreceptive cryptochrome regulatory proteins 593 

(repressors) interacting with circadian core molecular clockwork (CLOCK-BMAL1) offer a means by 594 

which geomagnetism could modify immuno-inflammatory biology [18]. Cryptochromes are highly 595 

conserved ancient-ubiquitous photoreceptor flavoproteins containing two non-covalently bound 596 

chromophores: a redox-active flavin adenine dinucleotide (FAD) and a light-harvesting cofactor. 597 

Cryptochrome signaling is tied to the photoreduction of FAD, whose spin chemistry is magnetoreceptive 598 

in an effect known as a radical-pair mechanism. The feasibility science for magnetoreceptive 599 

cryptochrome modulation operating within weak geomagnetic fields was expertly reviewed in the context 600 

of bird migration and plant models [19], [20], which highlights its potential for outbreak risk involvement. 601 

Geographical related outbreak risk factors 602 

This study showed that Europe, North America, Russia, and China originated 81% of all pandemics (n = 603 

25/31, 1500-), while Europe (2/3rd) and North America (1/3rd) accounted for all epidemics. Historical 604 

outbreak reviewer constraints-bias and incomplete record coverage pre-1700 cannot be ruled out. 605 

However, other potential causes also exist that implicate Northern Hemisphere (>30-40¡N) and Arctic 606 

latitudes, and possibly bird migration cruising altitudes over these latitudes. Prior solar activity-pandemic 607 

risk factor studies and the seven expert reviews didnÕt quantitatively assess geographical risks.  608 

Single nucleotide polymorphisms (SNP): One hypothesis is that certain race-ethnicities (Caucasian, 609 

Chinese) with innate-/early adaptive- immunity SNP(s) [26], [27], [90], [91], and devoid of preexisting 610 

protective-adaptive immunity (Bcell and/or Tcell), were doubly susceptible to novel-zoonotic IAV 611 

infections. Such people, if in contact with horses, poultry-migrating birds, animal markets and processing 612 

[13], [92], could have represented the primary zoonosis doorway and early human-to-human IAV 613 

transmission ÒbreederÓ population (SNP-family clusters) [93], [94]. In such people-families, Bottleneck-614 
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1Õs biology could have been more readily surmounted if they were rendered immunosuppressed by 615 

regional-scale stressors impacting their circadian (P01+T01 solar-/geo-magnetic trigger) and immune 616 

systems (cosmic rays, cold stress). Concurrent with surmounting Bottleneck-1Õs biology, regional viral 617 

transmission could have been facilitated in an immunologically susceptible population (Bottleneck-2), if 618 

also rendered immunosuppressed (geomagnetism, cosmic rays, cold stress).  619 

Regional modulation of atmospheric cosmic ray entry and ionization: Cosmic ray intensity was a 620 

significant predictor (trigger) in 20/22 All-model potential occurrences for Cat.B and epidemics +/-621 

concurrent epizootics, and in 24/55 significant predictors across all five-outbreak categories. Two-thirds 622 

of epidemics originated in Europe and the balance largely in Nth America. Geographical risk could have 623 

arisen in these regions associated with differentials in solar- and/or geomagnetism and cosmic ray 624 

ionization, in geographical latitudes-altitudes relevant to outbreaks and animal-IAV  reservoirs.  625 

Magnetic latitude defines a critical threshold (cut-off rigidity) below which cosmic rays of a lower energy 626 

cannot enter the atmosphere. Therefore, more cosmic rays penetrate the atmosphere at higher magnetic 627 

latitudes and with higher energies, thus increasing northern-regional cosmic-ray ionization [61]. 628 

Furthermore, variations in earthÕs magnetic dipole axis were associated with substantial regional 629 

differences in geomagnetic field strength and cosmic ray-induced ionization (CRII), with a maximum 630 

CRII during the Maunder minimum in Europe (1640-1720). Strong correlations between CRII and low 631 

cloud cover also existed (cooling link), limited to the northern Atlantic and Europe, Far East, and 632 

Antarctica [31]. Thus, increased CRI/CRII could have impacted geographically relevant regional climate 633 

change, in-flight bird risks, and animal-IAV reservoirs and human populations (immunosuppression).  634 

Regional scale cosmic ray induced immunosuppression: The literature highlights two links between 635 

increased cosmic rays and disease biology. Firstly, cosmic rays and ionizing radiation (IR) linked to 636 

immunosuppression are detailed in the space environment, radiotherapy, and environmental epidemiology 637 

literature [28], [29]. Immune response effects (lymphocytes, cytokines, cellular markers) were seen at low 638 

chronic exposure rates above and below 1mSv/year (milli -Sievert, international unit of radiation 639 
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absorption), and with very low doses of radon gas radiotherapy (0.3 mSv) [29]. The global mean human 640 

cosmic radiation dose was estimated at <0.4 mSv/year [95]. This collectively indicates a low threshold for 641 

immunological sensitivity to cosmic radiation. More generally, natural killer cells (innate immunity) and 642 

lymphocytes (adaptive immunity) appear most sensitive to IR [96], [97]. Acute low doses alter 643 

lymphocyte and cytokine responses [98], [99], while therapeutic IR modulates important immuno-644 

molecular control pathways [100], which are also coopted by IAV s during infection (NF-!B ).  645 

Secondly, there is evidence of increased disease mortality in magnetic anomaly regions. Significant 646 

correlations exist between annual CRII flux (0.2 mSv/year) and mortality rates in Sao Paulo, including 647 

infectious disease mortality. During 11-year solar minima when CRII was high there was a significant 648 

increase in mean mortality rates [30]. Sao Paulo resides in the South Atlantic Anomaly (760m above sea 649 

level, asl.), or EarthÕs weakest magnetic field and largest sink for cosmic high-energy particles [101]. 650 

For clarity, there is no need to invoke cosmic rays as the cause of IAV  mutation underpinning pandemics 651 

[43], [46], [47]. This is because IAVs are inherently error-prone during replication (epizootics, zoonosis, 652 

epidemics, pandemics, endemics), while the selection pressure imposed by antibody immunity and MHC 653 

and HLA system polymorphisms (animal and human genetic diversity in T-cell immune responses) 654 

naturally drives viral evolution [25], [50], [102]. The integration of faulty nucleotides occurs at an innate 655 

high rate yielding 2Ð3 nucleotide substitutions per replicated IAV genome [103], [104]. Thus, the 656 

opportunity for geographically expansive transmission-optimizing viral evolution is ever-present once a 657 

novel-zoonotic IAV replicates itself in sufficient titers to infect another person (or family cluster) for the 658 

first time (Bottleneck-1). 659 

Animal IAV reservoirs: The source of novel-zoonotic IAVs could also have represented a geographical 660 

risk linked to equine and/or avian ecology. First IAV source: Forty-three percent (n = 21/49) of influenza 661 

outbreaks since 1500 were associated with concurrent epizootics (n = 16/21 equine) (Figure 2B). Morens 662 

and Taubenberger tell us, Òregardless of geographic locale, equine influenza typically appeared about 663 

three weeks before human influenzaÓ [8]. This high concurrency of equine and human outbreaks does not 664 
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prove zoonosis. However, it does indicate the presence of a novel influenza-like pathogen undergoing 665 

epizootic transmission (implying MHC-driven mutation-recombination) in a species placed under 666 

physiological stress in proximity to humans (transport, work, and war). Human challenge studies with 667 

equine influenza virus (EIV) [105], [106] and a review (plus others) confirm the zoonosis potential of 668 

EIVs [107]. 669 

Mongolia spotlights a potential historical geographic hotspot for seeding other horse populations and/or 670 

IAV zoonosis. A large horse and wild ass population still exist in Mongolia with preexisting immunity to 671 

avian H1, H3, H5, H7, H8, and H10 IAVs introduced during bird migration stop-overs [108], [109]. This 672 

indicates cross-species IAV transmission occurred, likely enabled by abundant avian-like $-2,3-sialic acid 673 

receptors in the equine upper respiratory tract. It was suggested horses could have historically represented 674 

an IAV intermediate host [110]. Such geographic hotspots could have been replicated across Europe, 675 

North America, and Eurasia during the Little Ice Age, when horses were more abundant than today.  676 

Second IAV source: Even though migrating birds did not feature like horses in the concurrent epizootic 677 

data, their potential contribution to equine intermediate hosts before zoonosis (IAV mammalianization) 678 

and direct zoonosis pre-1900 cannot be ignored. After all, avian IAVs contributed from 1-8 genes to each 679 

20th-century pandemic since 1918, and both avian H5N1 and H7N9 zoonosis [8]. Migratory birds are 680 

also natural hosts to most IAV strains, making them a dynamic-interchanging viral gene pool reservoir 681 

with regional-global reach. Millions of migratory birds biannually flew over northern temperate and high 682 

geomagnetic Arctic latitudes (mean altitude 0.5-1.5km, maximum 3Ð5km asl.) [111], [112]. Thus, 683 

physiologically stressed birds carrying IAV strains spent hundreds of hours flying their geomagnetically 684 

sensitive physiologies and annually-varying immune systems [113]Ð[115] through increased cosmic ray 685 

levels, varying geomagnetic fields and storms, and much colder temperatures than terrestrial IAV hosts. 686 

Bird migration, therefore, increased their circadian-immune system exposure to all outbreak risk factors.  687 

Recent avian epizootics with highly pathogenic H5N1 also highlight how Arctic cold winter weather 688 

breakouts impacted wild bird migration and over-wintering epidemics in Europe and Eurasia, and how 689 
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these diseased birds posed risk to intensively (stressed) farmed animals [116]Ð[118].  690 

Indirect outbreak risk factors mediated by solar activity  691 

The same solar-/geo-magnetic activity (proxied by CRI, 10Be, MeV, SSN, and GSSN) and solar 692 

electromagnetic activity (proxied by TSI) variable anomalies identified as outbreak risk factors, plus 693 

GMA-AA, were also significantly correlated with the Greenland and Northern Hemisphere climate 694 

change outbreak risk factors (proxied by NHT¡C, GT¡C, SIC, IAR), which increased with data smoothing. 695 

A strong correlation between the NHT¡C raw data and 18-year SMA 10Be concentration anomaly risk 696 

factors (1406-1994) indicates the NHT¡C followed sustained changes in solar-/geo-magnetic activity. In 697 

fact, all extended cooling phases during the LIA coincided with grand solar minimum periods (S16 Figure, 698 

supplementary materials, Figshare DOI). 699 

Multiple regression models highlighted an issue with multi-collinearity, which like the correlation data 700 

increased with data smoothing (11yr SMA > raw data). Multi-collinearity strongly implicated solar-/geo-701 

magnetism (CRI >>> MeV >> 10Be) over climate change variables (NHT¡C > GT¡C), and mainly with 702 

epidemic categories (Cat.B > epidemics), which predominated in Europe > North America. Potential 703 

model CRI suppressor interactions are indicated by this high multi-collinearity, which is supported by all 704 

best model climate change variables being non-significant (all Pr>|z| = 0.051-0.2). This contrasted with 705 

GT¡C, NHT¡C, SIC, and IAR being significant predictors in simple logistic and linear regression analyses. 706 

The above points to a statistical confirmation that solar-/geo-magnetic activity was also an indirect 707 

outbreak risk factor via its correlated-impact on climate change, explaining the high multi-collinearity. 708 

This putative climate change link during the study period is well supported by the literature. 709 

A body of science promulgates a planetary gravitational and inertial influence on the sun (solar dynamo), 710 

which control cycles of solar magnetized wind and irradiance emissions. This planetary influence also 711 

modulates the EarthÐMoon system, which is theorized as a coupled orbital-rotational-energy exchange 712 

system (Pattern Recognition in Physics [119]). Magnetized solar wind modulates CRI (at earthÕs orbit), 713 
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and magnetospheric shielding of atmospheric cosmic ray entry (proxied by terrestrial 10Be and 14C), which 714 

in turn modulates low cloud cover (climate change) [32]. Magnetized solar wind also modulates earthÕs 715 

rate of rotation, which impacts atmospheric circulations (weather systems, climate change) and ocean 716 

circulations (heat-energy transfer, climate change), geomagnetism (cosmic ray entry-ionization, dipole 717 

axis movement), and periodic tectonic-volcanic activity (climate forcing volcanism) [120]Ð[124].  718 

In addition to the above described climate change mechanisms, the literature also describes the solar-/geo-719 

magnetic modulation of regional climate change during the Little Ice Age and study period. Strong 720 

cooling with +/-extremes of precipitation was observed in the North Atlantic and northern latitudes of 721 

Europe [125]Ð[127], China [128]Ð[131], and North America [126] [127], plus other regions. This regional 722 

climate change impact was mainly correlated with solar-/geo-magnetically modulated cosmogenic 723 

radionuclide data (10Be, 14C) and changes in atmospheric-weather circulations (location, phase, intensity). 724 

Likewise, Arctic drift ice changes over the last 11,000 years, including the last big LIA advance, were 725 

also correlated with cosmogenic radionuclide data (10Be, 14C) [134]. Sustained Arctic sea ice expansion 726 

during the LIA also implicated periodic climate-forcing volcanism [135]Ð[137].  727 

Therefore, in addition to solar-/geo-magnetic activity and cosmic rays putatively impacting circadian-728 

immuno-inflammatory biology (direct outbreak risk factors), solar activity correlated climate change also 729 

impacted IAV-host biology indirectly via its control over regional weather systems and climate change 730 

(indirect outbreak risk factors). Periods of colder NHT¡C and GT¡C (-ve anomalies) and Greenland 731 

glaciation (-SIC-algal growth, +IAR anomalies) are assumed to have been reflected regionally in 732 

European, Eurasian, and North American weather systems, and in modifying migrating bird habitats, 733 

over-wintering, and migration. In so doing, regional-scale cold stress would have immunosuppressed 734 

animal and human populations, while cold climate change (modulating temperature-humidity) would 735 

have assisted regional-scale infectious aerosol transmission and dried out animal and human respiratory 736 

mucosal surfaces to aid viral entry and replication.  737 

Outbreak risks linked to the glacial cycle stage  738 
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A fourth risk factor is comprehensible when the study period is given a glacial cycle context relative to 739 

the Holocene Climate Optimum (HCO), versus an arbitrary 1961-1990 RPM (per scientific norms) at the 740 

hot end of a multi-century warming oscillation initiated mid-study. By mid-study Greenland was at its 741 

coldest post-HCO temperature in nearly 8-kiloyears (mean -4.8¡C, n=10 ice cores), or -21% of its prior 742 

Holocene interglacial increase (mean +23.3¡C) [68], [69]. These post-HCO Greenland temperature 743 

declines were comparable to the shorter Kobashi GT¡C (-5.9¡C) and Vinther (-4.9¡C) ice cores (11.5kyr 744 

and 11.7kyr respectively) [64], [67]. This devolving-oscillatory temperature decline in Greenland post-745 

HCO as a percentage of the prior interglacial increase was similar to Antarctica (-15% to -36%). After the 746 

LIA temperature nadir Greenland then entered a multi-century warming oscillation, which paralleled an 747 

unprecedented (in 8kyr) increase in solar activity [138]. However, even by mid-RPM Greenland 748 

temperatures were still 2.5¡C-4.4¡C colder than at the Arctic HCO, meaning the hottest period on record 749 

was history. 750 

The literature confirmed the above data and showed the warmest Arctic period since the Last Glacial 751 

Maximum (approx. 18kyr ago) occurred from 8-5kyr ago, with temperatures 2-4¡C hotter than today 752 

[139]Ð[141]. The Greenland temperature decline after the HCO paralleled a sustained 40-50 Watt/m2 753 

decline in precession modified solar insolation at 60-65¡N [142]Ð[144], or circa 15-times the theoretical 754 

radiative-forcing impact of carbon dioxide at todayÕs output level (3 Watts/m2) [145]. Abrupt-periodic 755 

Arctic neoglacial advances also started about 5kyr ago, with northeast Greenland perennially ice-locked 756 

from 3kyr ago [146], [147]. Five millennia of Arctic glacier advances peaked in size in the middle of this 757 

study period [1], [2]. In Antarctica, the HCO period took place from 11.5-9kyr ago, with a secondary 758 

optimum 8-5kyr ago. Periodic post-HCO glacier advances also occurred in Antarctica [141], [148], 759 

including the Antarctic Peninsula [149], [150]. Much of this neoglacial ice melted after the LIA 760 

temperature nadir and Maunder minimum (1685 = deepest SSN trough in 7.2kyr), along with an 761 

unparalleled increase in solar magnetism in 8kyr (C14 derived SSN) [138].  762 

The above indicates earth entered a new ice age after the Holocene Climate Optimum, and the Poles were 763 
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near the peak of a solar and geomagnetic activity controlled multi-century warming oscillation at the 764 

RPM. Since the HCO peak temperature 8kyr ago, all temperature oscillations switched to a cooling phase, 765 

indicating a post-RPM ice age re-entry has a certain probability. This probability is supported by solar 766 

activity-climate experts who predicted a grand solar minimum trough between 2040 and 2060 and a 767 

return to a Little Ice Age-like climate [123], [151]Ð[155]. This has implications for unmitigated 21st 768 

century pandemic influenza risks. 769 

Conclusion 770 

This environmental immunology study addressed a crucial knowledge gap in influenza pandemic risk 771 

factor understanding. Influenza pandemics were triggered by 11-year solar cycle extremes, potentially 772 

implicating solar-/geo-magnetic activity repression of magnetoreceptive circadian core molecular 773 

clockwork (immune and inflammatory system controller), concomitant with influenza virus replication 774 

that evolutionarily coopted the circadian system. Influenza pandemics and regional epidemics were 775 

associated with periods of sustained and/or extreme low solar and geomagnetic activity and cold-776 

glaciating climate change (Arctic, Northern Hemisphere), potentially implicating regional-scale cosmic 777 

ray and cold-stress induced immunosuppression, and enhanced infectious aerosol transmission and 778 

respiratory mucosal drying. Europe1, North America1, Russia, and China originated most pandemics and 779 

all regional epidemics1, potentially implicating latitudinal-dipole-altitudinal differentials in cosmic ray 780 

induced ionization (immunosuppression, cold climate change), ethnicity-related host immuno-genetics 781 

(immunological susceptibility-innate), and equine-avian viral reservoirs and ecology. This collectively 782 

aided viral entry and replication in immunologically susceptible animals (epizootic-driven IAV variants), 783 

people (zoonosis, family clusters), and populations (pandemics, epidemics). Solar-/geo-magnetic 784 

mechanisms of influenza pandemic risk (incl. climate change), and our stage of the glacial cycle are not 785 

currently anticipated-mitigated. Prepandemic immunization [156]Ð[159] utilizing approved influenza 786 

vaccine technologies to generate broadly cross-reactive antibody herd immunity [160]Ð[162]) could 787 

mitigate immunological susceptibility and induced immunosuppression (to H5N1, H7N9 etc.) during this 788 
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high-risk grand solar minimum period. 789 
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